Empirical Bayesian learning in AR graphical models
نویسندگان
چکیده
منابع مشابه
Bayesian structure learning in graphical models
We consider the problem of estimating a sparse precision matrix of a multivariate Gaussian distribution, including the case where the dimension p exceeds the sample size n. Gaussian graphical models provide an important tool in describing conditional independence through presence or absence of the edges in the underlying graph. A popular non-Bayesian method of estimating a graphical structure i...
متن کاملLearning Bayesian Probability Graphical Models and Abduction
In this chapter I review Bayesian statistics as used for induction and relate it to logic based abduction Much reasoning under un certainty including induction is based on Bayes rule Bayes rule is interesting precisely because it provides a mechanism for abduc tion I review work of Buntine that argues that much of the work on Bayesian learning can be best viewed in terms of graphical models suc...
متن کاملBayesian Learning of Sparse Gaussian Graphical Models
Sparse inverse covariance matrix modeling is an important tool for learning relationships among different variables in a Gaussian graph. Most existing algorithms are based on `1 regularization, with the regularization parameters tuned via cross-validation. In this paper, a Bayesian formulation of the problem is proposed, where the regularization parameters are inferred adaptively and cross-vali...
متن کاملBayesian structural learning and estimation in Gaussian graphical models
We propose a new stochastic search algorithm for Gaussian graphical models called the mode oriented stochastic search. Our algorithm relies on the existence of a method to accurately and efficiently approximate the marginal likelihood associated with a graphical model when it cannot be computed in closed form. To this end, we develop a new Laplace approximation method to the normalizing constan...
متن کاملBayesian Learning in Sparse Graphical Factor Models via Annealed Entropy
We describe a class of sparse latent factor models, called graphical factor models (GFMs), and relevant sparse learning algorithms for posterior mode estimation. Linear, Gaussian GFMs have sparse, orthogonal factor loadings matrices, that, in addition to sparsity of the implied covariance matrices, also induce conditional independence structures via zeros in the implied precision matrices. We d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Automatica
سال: 2019
ISSN: 0005-1098
DOI: 10.1016/j.automatica.2019.108516